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a. Land-based Sources of Pollution

b. Overfishing

c. Lack of Public Awareness 

d. Recreational Overuse and Misuse
e-1. Climate Change and Coral Bleaching

e-2. Disease 

Climate Change and Coral Bleaching

A Focus Areas for US CRTF



The changing climate of coral reefs

temperatures (2 – 4oC hotter)

sea level
(0.1 – 0.4 m higher)

atmospheric carbon dioxide
(3 x more)

cyclone regimes
(more extreme)

IPCC Predictions for this Century



US Coral Reef Task Force:

The National Action Plan

calls to strengthen the effectiveness of existing 
MPAs, and establish new MPAs where appropriate

•Do MPAs have a role in mitigating the effects of climate change?

•Where are the most appropriate places in a warming world?



ICRI believes MPAs do have a vital role as a 
measure to mitigate regional impacts of 

climate change
Recommendations from ITMEMS 2   March 2003

Factor risk of bleaching impacts into 
management... 

Support resilience of coral reefs through:
good MPA design, 

MPA networks and,
reducing threats within management control.

Try to pick winners or simply spread the risk?

Design for a purpose….resilience



Impacts of hotter seas
Decades

Weeks

Years

Medium
impact

Catastrophic
impact

‘Collapsed’ (well grazed)

Very low
impact

Weeks

RecoveryPoor Recovery

‘Bleached’ (alive)Dead



Medium
impact

Very low
impact

‘Bleached’ (alive)Dead

Catastrophic
impact

‘Collapsed’



Decades

Months

Resilience – physiological and ecological

‘Collapsed’ reef (under-grazed)

Poor Recovery Recovery

Physiolog
-ically

Resilient

‘Bleached’ (alive)Dead

Ecologically Resilient

Settlement and 
growth of reef-

builders
WEAK     STRONG

Not 
Resilient



Good
Settlement and 
growth of reef-

builders

Good MPA design and 
management

Ecological Resilience 

An MPA network

Source of reef 
building larvae

‘Collapsed’ reef

Settlement

Good MPA design 
means collapsed 
reefs can rely on 

neighbors for reef-
building larvae

Growth

Good management 
provides good 

environment for 
settlement and 
growth of reef 

builders 

may require local 
threat reduction 



Try to pick winners or simply spread the risk?

Pattern of risk well known Pattern of risk poorly known

Risk of major
Bleaching

High

Medium

Low
An MPA network
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‘Buying time’ for our reefs 
Average global air temperature

Implications for coral reefs – depend on where
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The heat 
hazard –

summer of 
2001-2 on the 
Great Barrier 

Reef

~100 km

… and a regional scale…

Coastal

Offshore



The heat 
hazard –

summer of 
2001-2

… and a local scale…



Different places have different level of future hazard
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Mid-shelf and offshore reefs 
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That was the hazard – what about the impacts?
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……depends on the reef’s location, type and experience



Risk = hazard x negative consequences

Therefore there are two risk minimizing strategies 

1. Minimize the hazard 
2. Minimize the negative consequences

Risks to coral reefs – depends on 
where they are

(both hazard and vulnerability 
vary in space)

Risk – is changing as climate 
changes

Risk = probability of an unmanageable impact that negates 
management objectives



Flood - every 5 y 
COTS*   - ‘never’
Cyclone –every 15 y 
Bleaching – every  5 y  

Flood - every 30 y 
COTS   - every 15 y 
Cyclone – every 15 y 
Bleaching every 10 y 

Flood ‘never’ 
COTS   - ‘never’ 
Cyclone – every 15 y 
Bleaching – ‘never’ 

1990s 

COTS*
Crown of 

Thorns Starfish

Risk – depends on where you are



1990s (2040s) Risk – changing with climate

Flood - every 5 y (?)
COTS   - ‘never’ (?)
Cyclone –every 15 y (10 y)
Bleaching – every  5 y (1 y)

Flood - every 30 y (15 y)
COTS   - every 15 y (?)
Cyclone – every 15 y (10y)
Bleaching every 10 y (3y)



Simulating probable future risks
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… low emissions 
future

Different 
places – same 
emissions
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C.
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Are some 
global regions 
and/or local 
reefs at lower 
risk?

Global climate 
change would 
be less of an 
issue at this 
place – do 
they exist?

Tools and data requirements:

•CSIRO ReefClim model
•Daily(?) sea temperature (~ 10y)
•local bleaching thresholds

Your reef? 



What do increasing bleaching days per summer mean for coral 
communities? Appearance? Ecology?
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‘Appearance’ (~coral cover)
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More adaptive capacity 

Local management that works

Needed: local management that works to foster resilience
(I.e. effective MPAs and threat reduction)



The models match observations so far… 
reefs have tracked the 1990s’ baseline

19 01119 011

AIMS Long Term Monitoring Project



Seaweeds
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dynamic equilibrium

1990 2020 2050

Hard coral 
cover

Management 
that has 
worked

(Benefit of 
hindsight!)
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Avoid these

The challenge: without the benefit 
of hindsight..

Picking winners (lower cost, higher
risk strategy)

Most resilient

Not resilient

Monitoring 

alone will not 

give you the 

answer!

Pick these



Needed to pick places that will be winners:

1. Identifying places with low hazard.

2. A realistic basis for using local ecological 
knowledge to rate individual reefs according to their 
likelihood of desirable versus undesirable future 
reef trajectories

• dynamic equilibrium
•change in coral composition only (drift)
•phase shift
•collapse



…..using local ecological knowledge
How post-bleaching impact surveys can help us pick winners



AIMS and CRC Reef
Janice Lough

Craig Steinberg

Mike Mahoney

Mary Wakeford 

Emre Turak

Ray Berkelmans

Stuart Kininmonth

Mary Wakeford

Madeliene Van Oppen
Glenn De’ath

Scott Wooldridge

Al Strong (NOAA) 

William Skirving (NOAA) 

John Guinotte (KU/JCU) 

Rod Salm (TNC)

Paul Marshall (GBRMPA)

Roger Jones (CSIRO)

Peter Whetton (CSIRO)

Thanks to…

GREAT BARRIER REEF
MARINE PARK AUTHORITY

The Nature 
Conservancy



~ 500 km Field access to GIS with high 
resolution SST maps and 10 year 

satellite archive were invaluable to 
post-bleaching impact assessment 

Cumulative heat stress summer 
2001-2

Maximum heat stress summer 
2001-2

Acclimatization regime
1990s







1 km pixels

Index of 
summer 
heat

GIS was 
created for 
selection of 
assessment 

sites

Normal   Bleached       Dead

Field assessments of sites
One bar per site



Did the 2002 index of hazard (heat 
anomaly) explain the bleaching impact?
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x • Interactions and 
conditional dependencies 
with other causative 
factors

• Inaccuracies in SST
• Not the best index of 

SST
• Not the best index of 

bleaching impact 
• Differences in 

vulnerability of coral 
species and communities

Acclimatization regime?

No: there were…



Which locations passed the test of summer 2001-2?
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resistant to climate-related coral bleaching?



What made those reefs resistant?
Were they exposed to an anomaly?

A. May be 
overheated 
next time

B. Unlikely
to be 

overheated

D. Poorly
Adapted

C. Well
Adapted

LowHigh

Coral 
survival

Good
Oceanography

Good Luck

Reason

YesNo

Places with reliable mixing with cool 
waters
Places where strong flows resuspend 
sediments and increase shading
Deep reefs

‘Right’ history of acclimatization
‘Tough’ coral communities present
Prevalence of heat resistant
zooxanthellae genotypesSynergistic effects – location, type, history



Turbid water reefs Clear water reefs 

Physical 
models of heat 
hazard
W.Skirving and 
C.Steinberg

Acclimatization:
Normal 
summertime 
averages from 
satellite SSTs
M. Mahoney

Places with reliable mixing with cool 
waters
Places where strong flows resuspend 
sediments and increase shading
Deep reefs

‘Right’ history of acclimatization
‘Tough’ coral communities present
Prevalence of heat resistant
zooxanthellae genotypes



Better explanatory power used in combination 
than when tested singly

Promising insights using a Bayesian approach

GIS proxies for mixing, cooling and 
acclimatization

Categories of coral community types and habitats

Places with reliable mixing with cool 
waters
Places where strong flows resuspend 
sediments and increase shading
Deep reefs

‘Right’ history of acclimatization
‘Tough’ coral communities present
Prevalence of heat resistant
zooxanthellae genotypes



2. Remote sensing and GIS

mixing
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CHANNEL
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What 
combination of 

information 
best explained 
places where 
mortality was 

low

Bayesian Belief 
Network 
combines:
•Expert opinion
•Learnt 
dependencies

A Mixing  
index using 

current 
vectors depth 

model

NOAA 50 km 
products 
hotspots,  
Degree 

heating weeks

An Index for 
ease of mixing 

with cool 
water from 

100 m

AIMS 1 km 
SST products

Index for 
Acclimatization 

regime

Index of 
bleaching for 

‘sites’

Categories of 
reef habitat 

and community 
type

Index of 
mortality 
for ‘sites’

1. Ecology and post-
bleaching impact 
surveys



‘…reefs are deteriorating from coral 
bleaching and mortality due to warming 

seas….’

‘…counteract these trends by adopting a 
number of risk minimising strategies.’

Statement from         Second International Marine Ecosystem 
Management Symposium, 

Manila, Philippines, March 24-27 2003



Thank you



Internal 
bioeroders

Fish, coral and 
coralline algae 
dominance

Turf algal 
dominance

Bleaching, 
coral 
predators, 
diseases

Sea urchin reduction 
with reduced fishing

Fleshy algae reduction 
with reduced fishing

Nutrients/
organic 
matter and 
fishing

Sediments 
and fishing

Turf algal 
dominance

Various algae, 
heterotrophs 
and bioeroders

Pollution 
and fishing

Urchin 
diseases

Urchin 
recruitment

Large-scale 
sea urchin 
reduction with 
continued 
fishing

Small-scale sea 
urchin reduction with 
continued fishing

Fleshy algal 
reduction with 
continued fishing

Reduce 
fishing

Reduce 
fishing

Local conservation actions

(McClanahan,
Polunin and Done)

Sea urchin 
and turf 
dominance

Fleshy brown 
algal 
dominance

Fishing


	ICRI believes MPAs do have a vital role as a measure to mitigate regional impacts of climate change

